Entropy in the Physical World

Ronnie Blondale, Emma Lubes, Patrick Marchione, Loudon Mehling

Abstract—Cryptographic algorithms need sufficiently random
numbers to generate keys and maintain security. These numbers
are currently generated via Pseudo Random Number Generators
(PRNGSs) and random enough to not allow attackers to correctly
determine the random numbers. Yet as more Internet of Things
(IoT) devices and embedded systems, which lack the computation
power to generate sufficient random numbers, increase, the secu-
rity of these devices decrease. This study aims to identify potential
physical sources of entropy, or randomness, that could be used
to generate random numbers that can be used in devices such as
IoT and embedded systems. The potential sources’ datasets were
identified and collected through Google Dataset Search along
with RealRandom, LLC. providing their own entropy server,
Entropy As A Service (EAAS) and was then tested using the
NIST Statistical Testing Suite. The results showed that the EAAS
server performed the best against the NIST STS tests, almost
3.25 times better than the second best, barometric pressure. We
conclude that entropy derived from physical sources should be
used in cryptographic algorithms as PRNGs generate insufficient
random numbers and introduce vulnerabilities to the systems. In
the future, generators should be built for certain physical sources
such as wind speed, wind direction and barometric pressure
instead of using static datasets.

Index Terms—entropy, random number generation, security,
physical sources, weather entropy, thermal noise entropy, NIST
Statistical Test Suite

I. INTRODUCTION

True randomness is necessary for many elements of cyberse-
curity. The majority of these use cases lie within cryptography
and authentication [1]. Individually, these use cases include
encryption keys, MAC algorithm keys, digital signature keys,
authentication mechanism values, key establishment values,
PINs, passwords, and nonces [2], [3]]. These algorithms rely
on true randomness to remain as secure as possible.

The keys created and used within cryptographic algorithms
can become predictable and insecure without true randomness.
As a whole, cryptographic algorithms are only as strong as the
keys used within them are random [4]], S]], [6], [[7]. Attackers
can mine predictable keys to find common primes used for
seeding their generation algorithm [5]. Users then believe their
device is secure because they use a secure encryption algo-
rithm. In reality, their device is insecure because of insufficient
randomness used within the algorithm, of which they have no
control. Not only do users not have control over the source
of randomness used to seed their encryption algorithms, but
companies also use no single systematic solution to mitigate
vulnerabilities identified to be caused by poor entropy [4].
Therefore, a device using poor entropy may not be entirely
secure, leaving a user insecure due to an algorithm they
believed to be securing them.

Algorithms used to generate RSA keys and other forms
of cryptographic keys are deterministic; in order to create
different keys, the algorithm must be supplied with a seed

to generate a key [2l]. Every time a key is generated with that
seed, it will be the same. If an attacker can guess the seed
used to generate a key, they too can generate the same key. For
example, suppose a program generates a key using the current
time as the seed, and an attacker can estimate the generation
time roughly. In that case, they will have to try significantly
fewer combinations than a traditional brute force attack.

Using unpredictable, random seeds can mitigate this at-
tack [4]. The current mitigation for this attack is to use
Cryptographically Secure Pseudo-Random Number Generators
(PRNGS). In most cases, they are random enough that an
attacker cannot narrow down the number of seeds to try. How-
ever, there has been a recent increase in IoT and embedded
systems with minimal computing power, and the PRNGs on
these devices are extremely limited. [S]]. Therefore, they cannot
create a wide enough range of seeds, allowing attackers to
easily reverse engineer these weak keys.

The recent milestone of quantum supremacy also brings to
light the need for quantum-resistance encryption in the post-
quantum world. Classical True Random Number Generators
(TRNGsS), which are not based on deterministic algorithms and
easily-solvable quantum problems, such as factoring, will be
significantly harder for quantum computers to break [8]. It is
of upmost importance that cryptographic keys are generated
with sufficient entropy as the world begins to use quantum
computing. Allowing for more direct access to an entropy
source, such as using a physical source of entropy, may also
aid in the creation of difficult-to-break quantum security.

The proposed solution to this issue of insufficient random-
ness on computationally limited devices is what is referred to
as an entropy authority. An entropy authority would address
this issue by providing externally generated random data to
these devices [4]. This data will be provided in the form of
random bits. From there the devices in question would be able
to generate keys for secure communication and remain secure.
Since the entropy authority is an external entity, it can devote
an extreme amount of computing power to generating or
collecting random data. The communication process between
a device and an entropy authority is depicted in Figure
Though the scheme is clear, the actual source of random data
is not outlined. As such this project aims to assess the viability
of various sources of data for an entropy authority.

Unlike non-physical sources derived from deterministic
algorithms, physical sources of entropy can provide true ran-
domness [9]], and will be used by the entropy authority. Physi-
cal chaotic sources use pre-existing uncertainties in conditions
to generate randomness. Because physical sources of entropy
are based on uncertainities already existing in the system,
they cannot be reversed by an attacker to determine the next
number in the sequence. However, PRNGs suffer from this
predictability, as they are completely deterministic algorithms.

/a
=

=

i3

Entropy
Authority

il

‘?/' Device Client

Fig. 1. The entropy authority infrastructure [4].

Certificate
Authority | §

Therefore, physical sources of entropy can be used to seed
PRNGs and create unbiased, uniformly distributed sequences
of random numbers.

Our project is a sub-project of the blockchain entropy au-
thority. Our project goals include identifying potential physical
sources of entropy to be used by entropy authorities, locating
APIs for these sources, and analyzing the performance of
the data within the NIST Statistical Test Suite. Through this
project, sample data from the real random entropy as a service
server, thermal noise, wind direction, wind speed, humidity
and barometric pressure were analyzed. Overall, the project
found that the data provided by the entropy as a service server
was of the highest quality by far. The other data-sets analyzed
were of poor quality, all falling below 30 percent combined
pass rate through the NIST statistical testing suite.

II. BACKGROUND

A. The Importance of True Randomness

1) Properties of True Randomness: A source of random-
ness has multiple properties that it must fulfill to be truly
random. A source must be intrinsically random in order to be
truly random; the source must have an integral property that is
random, instead of unpredictable external events caused by the
source [2]]. The most frequently used principles of entropy in
source generation are unpredictability, a lack of patterns within
the source-generated bit sequences, and an even distribution of
bits within the outputted bit sequences [6]]. Figure 2] provides
a visual depiction of patterns within sequences generated
by PRNGs. Researchers used these principles to generate
questions to determine the suitability of a selected source for
entropy analysis:

1) "How much ’unpredictability’ does my source gener-
ate?”
2) “How do I translate this unpredictability into random bit
streams or numbers?”
3) ”How efficient is this translation?”
4) ”Is the resulting data biased or not?”
5) "Do I get sufficient unpredictable output for my pur-
pose?”
6) “Are all the output bits I am getting unpredictable, or
only a portion?” [2].
An entropy source that can provide adequate answers to these
questions is a candidate for true randomness and should be
further evaluated for the strength of its entropy.

RANDOM.ORG PHP rand() on Microsoft Windows
TRNG PRNG
-Uses an unpredictoble phusical VS - Uses methematical and
means to generate numbers(like deterministic algerithms(completely
atmospheric neise) computer-generated)

Fig. 2. Visual depiction of true randomness versus pseudo-randomness [[10].

2) Obtaining and Evaluating True Randomness: Physical
sources of entropy are the best candidates for obtaining true
randomness. Computers are not typically used as potential
sources of true randomness because engineers designed them
to be as predictable as possible [6]. The most secure deter-
ministic algorithm-based PRNGs will use physical sources of
entropy to seed their algorithms [9]. A truly random source
will consist of a physical noise source, data sampling, and
any necessary (yet minimal) post-processing [6]. All origin
points should remain separate from any post-processing that
occurs to the obtained data, even though the post-processing
procedures are less likely to contaminate the data than a
deterministic algorithm [9], [6]. Physical sources of entropy
are the best candidates to fulfill these requirements as they
are not designed to be predictable and contain the necessary
elements for intrinsic randomness while remaining separate
from the processing mechanisms.

Researchers must evaluate physical sources of entropy for
the strength of randomness they output to create secure Ran-
dom Number Generators (RNGs). The current process for this
includes collecting data from the physical source, conditioning
the data in order to remove bias, and running a test suite on the
output bit sequence [9]. Common entropy suitability test suites
include the NIST Statistical Test Suite, DiecHARD Battery of
Tests, ENT Test Program, and Comparative Test Parameters
[I1]]. Of these tests, DieHARD and NIST are the standards.
Testing physical sources of entropy ensures that the RNGs
they seed are truly random and not pseudo-random.

B. Evaluating Data for Randomness

DieHARDER is an extended test suite based on the
DieHARD Battery of Tests aimed at verifying the randomness
of random number generators. The NIST test suite, outlined
in NIST SP 800-22 Rev 1la, has the same intention, but for
both random number generators and pseudorandom number
generators [[12]. The DieHARD family of tests explicitly
focus on the generator aspect of randomness, while the NIST
test suite allows for the randomness of outputted data to be

corroborated as random. The DieHARD and DieHARDER
tests suites should not be used to check the randomness
of standalone data because of their focus on the generator
aspect of randomness. One should note that verifying the
randomness of standalone files of potentially random data
itself does not ensure the randomness of the generator as
a whole; one must look at the input of the generator and
its intrinsic characteristics, as well as the randomness of its
output, to demonstrate the randomness of the entire system
[13]].

The DieHARD family of test suites also requires a very
large amount of output data in order to run the tests since
they were developed on receiving RNG output as test input.
Brown recommends at using least 10 MB of data to limit the
amount of data rewinds the test must perform [13]]. The NIST
test suite can be used on smaller data sets and consists of 15
tests. Entropy is given a 0-10 score out of 10 based on the
p-value selected at test run-time; an 8 or higher is considered
passing [[12].

The Frequency (Monobit) Test checks the proportion of
zeroes and ones from the sequence provided to ensure that
there is an equal probability that it is either a zero or a one
[14]. Frequency Test within a Block tests to see frequency
of ones specified in a block should equal 1/2 of the total
amount of digits inside of the block. Cumulative Sums Test
is used to determine if the cumulative sum of part of the
sequence provided is in line with what is expected for a
random sequence. The Runs Test checks to see the number
of identical bits in a continuous sequence are uniform to what
is expected from a random sequence and determines if there
is a too small or too large of a frequency among ones and
zeroes in a sequence. The Longest Run Tests determines if a
block of the sequence has an expected number of continuous
ones for a random sequence. The Binary Matrix Rank Test
determines if a sequence broken down into sub-sequences is
linearly dependent. Discrete Fourier Transform Test checks
if there repetitive patterns in close proximity of one another
that would deviated from what is expected from a random
sequence. Approximate Entropy Test checks the frequency
of overlapping blocks for the number of patterns expected
from a random sequence. The Serial Test checks the number
of times that 2" patterns occur compared to that expected
from a random sequence. Finally, the Linear Complexity
Test determines if the length of linear feedback shift register
(LSFR) is complex enough to be considered random .

III. PHYSICAL ENTROPY SOURCE CANDIDATES

The primary source themes discussed in this background
were taken from 16 papers written about physical sources of
entropy. They can also be found in Table [II Other potential
sources considered, but whose validity could not be verified
by an academic source, and will not be discussed, include
harmonics, production processes, production fluctuations, con-
sumption rates, loss rate in transmission, precipitation, solar
radiation, and atmospheric RF noise.

Today, a standard piece of technology in hardware is
Field Programmable Gate Arrays (FPGA), which allows non-
manufacturers to program or reconfigure specific parts of

a circuit. These re-programmable circuits can be used in
conjunction with ring oscillators as a source of entropy through
time jitters [[15]. Time jitters, or delays from a signal inside a
circuit, are caused by many different events such as thermal or
electrical noise and interference. Non-deterministic processes
inside or outside of the circuit can cause these jitters in the
system. Through measuring these time jitters, the output is
used for random bit generation.

Metal-oxide semiconductors (MOS) are fundamental pieces
of technology used across devices today and could be a
potential source of entropy. When a MOS device experiences
a phenomenon called soft breakdown, large fluctuations oc-
cur due to the leakage of current through the device [16].
These large fluctuations of current caused by soft breakdown
are instantaneous and unpredictable. Yasuda et al created a
system of MOS devices and purposefully made these devices
encounter soft breakdown to measure the fluctuations of the
current. They found that these fluctuations are six times larger
than thermal noise and can produce high-quality entropy.

Wind may also be an excellent physical source of entropy.
Kim et al found that measuring the flow of wind is intrinsically
chaotic, unpredictable, and non-reputable [17], [18]]. They have
created a standalone TRNG device that creates random bit
generation based on measuring wind flow. They achieved
this through a triboelectric energy generator (TENG) which
converts the wind-flow signal to an electrical signal for the
output. This methodology is a feasible, ecological, and cost-
efficient solution as a source of entropy.

Currently, many devices have on-board sensors that measure
the current temperature inside and outside their respective
systems. Pawlowski et al uses an integrated temperature sensor
from an IoT device to determine if the temperature can be a
source of entropy [19]. They create an interface to obtain the
temperature measurements from the IoT device, transfers them
to an analog signal, and then returns the least significant bits
of data. To generate the entropy source, they concatenated the
least significant bits of data returned from the IoT device.
While this study was specifically about IoT sensors, their
method of extracting temperature measurements also applies
to other device types.

Like temperature, sensors in aviation devices such as gy-
roscopes, accelerometers, and barometers are also entropy
sources. Research done by Cho et al used these sensors for
random bit generation. Similarly to [[17], [18], Cho et al uses
both the least and most significant bits returned by these
sensors from a drone in a stationary and moving state [20]].
While a drone was the only target device for this study, it
proves that these sensors create quality entropy and scale to
larger aviation devices.

Cryptocurrency mining, most notably the Bitcoin
blockchain, can be used as a source for entropy. Research
completed by Bonneau et al implemented a blockchain
beacon that uses the headers of one or more Bitcoin
blockchain blocks[21]]. These blockchain headers are a
640-bit data structure including the block hash and fields
such as the nonce and the version number previous block
hash. The implemented beacon must also satisfy these
security properties: to be unpredictable, to be unbiased, to

be universally sample-able, and to be universally verifiable.
Bonneau et al suggests using beacons for smart contracts,
securing election protocols and potentially other use.

Several schemes generate random numbers on IoT devices
locally to make up for their inability to do so with pseudo-
random means. These dedicated circuits will generate random
numbers via physical phenomena, ideally making them un-
predictable. Schemes include temperature, humidity and light
sensors[19]], SR Latches[22], and SiN MOSFET noise[23]].

Spontaneous Emission is a phenomenon that occurs where
an atom or specific ion releases energy that a photon will
absorb. Williams et al use this phenomenon as a noise source
for random bit generation with a laser and an amplifier [24].
The amplifier in this design creates an amplified spontaneous
emission noise in the system, which is then recorded by two
photoreceivers independently. With this scheme, Williams et
al show that amplified spontaneous emission noise is much
greater than that electronic noise as they have achieved a
random bit generation rate of 12.5 GB/s.

Broadband optoelectronic devices emit or detect light at
high speeds. Adding a chaotic optical signal within these
devices causes random amplitudes and time positions which
are attractive values for random bit generation [11]]. Through
the use of semiconductor lasers, optical chaos is created based
on either optical or electro-optical feedback in the system
[25]]. Once chaos has been introduced, an oscilloscope converts
the analog signal to a digital one, and then post-processing
techniques are used to create the random bit generation [[11].

There are many different methods of producing random bit
generation based on a technique known as photon time-of-
arrival detection. One variation of this technique is to count
the number of photons in a given time interval. Hart et al
developed a similar system where a continuous wave laser
outputs photons at high speeds, which a photon-counting
device records [9]. Once recorded, Hart et al digitizes the
interarrival times between the photons and are used as the
signal for random bit generation.

Finally, the last source candidate explored in this paper is
the chaos created in electrical circuits. The chaos in electrical
circuits allows for non-deterministic outputs through noise or
changes in the configuration of the circuit, such as FPGAs
[15]. Additional elements in FPGA systems can create random
bit generation as well. Because electrical chaos is relatively
easy to create, there are different ways to achieve random
bit generation like SR Latches [22]], Sin MOSFET [23]], and
through Ink Jet printers [26].

IV. PROJECT METHODOLOGY AND CONSTRAINTS

The overall process used for the project is outlined in Figure
[l Additional details are provided in the following subsections.

A. Finding Data Sets

One of the entropy sources used for testing was the Entropy
As A Service (EAAS) server provided by Real Random,
LLC. This server provides 256 and 512 bits of data per
request. Other Application Programming Interfaces (APIs)
were considered for testing entropy sufficiency, but challenges

TABLE I
SOURCE CANDIDATES AND CATEGORIES

Category Source Candidates

Hardware TRNG Devices Time Jitter in Electrical Oscillators

Chemical Reaction MOS Soft Breakdown

Weather Sensing Networks Wind Speed and Direction, Tem-
perature,

Humidity, and Barometric Pressure

Cryptocurrency Mining Bitcoin Mining

IoT Ecosystem Monitoring On-Board Sensors in IoT Devices

Optical Amplified Spontaneous Emission,
Optoelectrical Chaos,
and Single Photon Time-of-Arrival
Detection

Stochastic Chaotic Electrical Circuits

Create and run
Python script to
parse the data set

Find a data set fora
physical source

Run NIST STS and
record results

Turn integers into
ASCII 05 and 15

Google
Dataset
Search for
source

Find data set
>7MB

Analyze data
set for data
format

Identify the
random
digits

Create
bounds

Convert
integers to
binary

Isolate data
and send to
aTXT file

Fig. 3. A visual depiction of the data selection and testing process developed
and used during this project.

arose that limited these APIs from being used. The main
challenge of attempting to use APIs was the slow data rate. The
time to gather the necessary data to run the DiecHARDER tests
correctly would have taken multiple days. Another challenge
in using APIs was the small amount of data that a single
API request sent back. The API requests would return integers
verifying from one digit to eight digits. Making the necessary
requests to the API to run the DieHARDER suite would be
complex due to the APIs potentially blacklisting our IP address
or hard-capping the number of API requests allowed, either by
rate-limiting or a financial obligation.

Due to these challenges, we selected other static data sets
for entropy testing. Only data sets with data that represented
categories from the source list (Table [[) and were at least 10
MB in size were selected. We found data sets by searching
the Google Dataset Search tooll for big data. Our search terms
were our source candidates from Table [l We chose data sets
representing wind direction, wind speed, barometric pressure,
humidity, and thermal noise from the list of sources due to
their availability online, and the ability to find at least 10 MB

https://datasetsearch.research.google.com/

of data on each source.

B. Testing Data Sets

1) Converting ASCII to Binary: For this project, potentially
random testing data must be binary. Our fundamental assump-
tion is that of this data, every individual bit has an equal chance
of being a 1 or 0. However, some of the selected data sets
stored data in ASCII instead of binary. As a result, this data
had to be translated into binary, and maintaining statistical
randomness across this translation is not straightforward. First,
we must determine what part of the data we are assuming to be
random for these data sources. Typically, the data will present
itself in a uniform format, so assumptions of randomness will
carry on for all data points.

An example of these assumptions is the testing performed
with wind direction. The located data set gave readings of an
angle between zero and 360 degrees. We assume that each
degree measurement between zero and 360 is equally likely
to appear within the data set. With different data sets, one can
assume that a specific range of digits will be random, but in
this case, this approach does not make sense because of the
bounds. Since all angles are assumed to be equally possible,
the angle measurement was converted to binary, creating a
range from 000000000 to 101101000. This data cannot simply
be written to a file, as the process that created the data will
skew its statistical properties. The range does not reach Is
entirely, which violates the assumption that all binary bits are
equally likely to be one or zero. The range must be limited
in order to fix this problem. The range was limited from
zero to 255 so that the represented range would be 00000000
to 11111111, and any higher data points were thrown away.
This subset should also have an equal probability that any
number between zero and 255 should appear, similar to how
the original data set had an equal probability that any number
between zero and 255 would appear. This full range should
have an equal chance of all bits being 1s or Os. From there, the
bits are written to a file and tested. This process of finding the
random digits, creating bounds, and converting ASCII integers
to binary was used for all selected data sets.

2) The NIST Statistical Test Suite (NIST STS): We used
NIST STS to run a battery of statistical tests against the
converted binary data found. NIST STS requires the following
input parameters to specify the sequence length, mode of input,
tests to run, and number of bitstreams. Most of the parameters
required remained the same throughout the testing process.
The sequence length remained at the default value of 100,000
bits, and the input was either a converted text or binary file.
All tests provided by NIST STS were run on the data with the
default value of ten bitstreams.

V. EVALUATION AND DISCUSSION

Results from the NIST STS tests are shown in Table [lIl 10
named tests represent the entropy findings. These tests are dis-
cussed in Section All integers represent the proportional
result (i.e. 9 is equivalent to a 9/10 in the test output).

Table ranks the tested entropy sources based on a
percentage of proportional results. 10 tests are listed, each

with a maximum of 10 in each proportion, so the numerators
for each result per test are added and divided by 100 to get the
resulting percentage. This is not a percentage of tests passed;
rather, it is a percentage representing the overall strength of
the entropy.

We interpret entropy strength as a spectrum, as opposed
to a binary result regarding the sufficiency of the entropy.
Since the only generator and non-static data set we tested was
the Real Random EAAS API, we cannot verify the intrinsic
characteristics of randomness provided by the other physical
sources of entropy by any means other than reviewing existing
academic literature. The EAAS Server presents the strongest
entropy of the tested sources. It is approximately 3.25 times
stronger than the next strongest entropy source, barometric
pressure (27%). Humidity and wind speed both have a strength
percentage of 21%, so they are both listed as position four.
Wind direction and thermal noise are ranked second-to-last
and last, with entropy strength percentages of 10% and 0%,
respectively.

VI. CONCLUSION

True randomness is necessary for generating strong cryp-
tographic function components. However, random numbers
created by PRNGs is insufficient and can lead to hidden
vulnerabilities which are difficult to mitigate caused by non-
random seeds used within cryptographic algorithms. Instead,
physical sources with intrinsic randomness should be used to
generate these seeds. Our contributions include looking at six
potential sources of physical randomness, chosen based on
the results of an academic literature review, and testing data
generated by these sources for the strength of their entropy
using the NIST STS. Our results demonstrate that the Real
Random EAAS server is the strongest source of entropy of the
tested potential entropy sources. The weakest potential entropy
source is thermal noise.

The poor outcome produced by testing thermal noise sur-
prised us; the literature review advises that it should be a strong
point of entropy. This outcome may be due to the limitations
on data collection that we faced. Data set limitations that may
have impacted the outcome include the lack of control over
how much data the authors generated and the lack of control
how the authors presented and formatted that data. The ability
to test more data overall, or to being able to feed more data
directly from a generator into the NIST, as was done for the
EAAS server, could have impacted the outcome.

In the future, generators for wind speed and direction,
humidity, barometric pressure, and thermal noise should be
created and/or located. The creation of generators for these
data types will allow for the study of their intrinsic character-
istics and generator layout for randomness property analysis.
More thorough testing of their output data may be performed
as well, providing more clarity regarding the quality of their
entropy. If the creation or location of generators is not possible,
one should get multiple data sets of each tested data type and
test the data provided by each of those data sets to increase
the studied sample size. The time limitations of the project
and the challenges presented by using public APIs prevented
a larger sample size from being developed for this project.

TABLE 11
NIST STS RESULTS
Source Frequency | Block Fre- | Cumulative Runs | Longest Rank | FFT | Approximate | Serial | Linear
quency Sums Run Entropy Complexity
EAAS 9 10 9 10 10 10 10 0 10 10
Server
Thermal 0 0 0 0 0 0 0 0 0 0
Noise
Wind Direc- 0 0 0 0 0 0 0 0 0 10
tion
Wind Speed 0 0 | 0 | 0 Jo | 10 | 1 JO | o |10 |
Humidity 0 0 | 0 | 0 Jo | 9] 0o Jo | 2 |10 |
Barometric 2 0 1 1 1 10 3 0 0 9
Pressure
TABLE III
ENTROPY SOURCE PASS RATE
Position Source [Percentage

1 EAAS Server | 88%

2 Barometric Pressure | 27%

4 Humidity | 21%

4 Wind Speed | 21%

5 Wind Direction | 10%

6 Thermal Noise | 0%

ACKNOWLEDGMENT [71 M. Stipevi¢ and C. K. Kog, “True random number generators,” in Open

We would like to thank Doug Hill and Real Random, LLC

for

sponsoring this project and providing access to the EAAS

API. We would also like to thank Sumita Mishra for her
guidance and support during this project.

[1]

[2]

[3]

[5]

[6]

REFERENCES

R. Katyal, A. Mishra, and A. Baluni, “True random number generator
using fish tank image,” International Journal of Computer Applications,
vol. 78, no. 16, 2013.

0. T. RANDOMNESS, “The importance of
true randomness in cryptography,” 2017. [Online].
Available: https://www.insidesecure.com/Media/Files/Whitepapers/

The-Importance-of-True-Randomness- in- Cryptography

L. Crocetti, S. Di Matteo, P. Nannipieri, L. Fanucci, and S. Saponara,
“Design and test of an integrated random number generator with
all-digital entropy source,” Entropy, vol. 24, no. 2, 2022. [Online].
Available: https://www.mdpi.com/1099-4300/24/2/139

H. Corrigan-Gibbs, W. Mu, D. Boneh, and B. Ford, “Ensuring high-
quality randomness in cryptographic key generation,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security, 2013, pp. 685-696.

J. Kilgallin and R. Vasko, “Factoring RSA keys in the IoT era,” in 2019
First IEEE International Conference on Trust, Privacy and Security in
Intelligent Systems and Applications (TPS-ISA). 1EEE, 2019, pp. 184—
189.

A. Vassilev and T. A. Hall, “The importance of entropy to information
security,” Computer, vol. 47, no. 2, pp. 78-81, 2014.

[8]

[9]

(10]

(1]

[12]

[13]

[14]

Problems in Mathematics and Computational Science.
pp. 275-315.

M.-J. O. Saarinen, G. R. Newell, and B. Marshall, “Building
a modern TRNG: An entropy source interface for risc-v,” in
Proceedings of the 4th ACM Workshop on Attacks and Solutions in
Hardware Security, ser. ASHES’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 93-102. [Online]. Available:
https://do1.org/10.1145/3411504.3421212

J. D. Hart, Y. Terashima, A. Uchida, G. B. Baumgartner, T. E. Murphy,
and R. Roy, “Recommendations and illustrations for the evaluation of
photonic random number generators,” APL Photonics, vol. 2, no. 9, p.
090901, 2017.

“We believe in building a more secure internet,” 2022. [Online].
Available: https://realrandom.co/about-us/

X. Fang, B. Wetzel, J.-M. Merolla, J. M. Dudley, L. Larger, C. Guyeux,
and J. M. Bahi, “Noise and chaos contributions in fast random bit
sequence generated from broadband optoelectronic entropy sources,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61,
no. 3, pp. 888-901, 2014.

L. E. Bassham III, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid,
E. B. Barker, S. D. Leigh, M. Levenson, M. Vangel, D. L. Banks et al.,
“SP 800-22 rev. la. a statistical test suite for random and pseudorandom
number generators for cryptographic applications,” 2010.

R. G. Brown, D. Eddelbuettel, and D. Bauer, “Dieharder: A random
number test suite,” 2022. [Online]. Available: https://webhome.phy.
duke.edu/~rgb/General/dieharder.php

L. E. Bassham, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid,
E. B. Barker, S. D. Leigh, M. Levenson, M. Vangel, D. L. Banks, N. A.
Heckert, J. F. Dray, and S. Vo, “Sp 800-22 rev. la. a statistical test suite
for random and pseudorandom number generators for cryptographic
applications,” Gaithersburg, MD, USA, Tech. Rep., 2010.

Springer, 2014,

https://www.insidesecure.com/Media/Files/Whitepapers/The-Importance-of-True-Randomness-in-Cryptography
https://www.insidesecure.com/Media/Files/Whitepapers/The-Importance-of-True-Randomness-in-Cryptography
https://www.mdpi.com/1099-4300/24/2/139
https://doi.org/10.1145/3411504.3421212
https://realrandom.co/about-us/
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php

[15]

[16]

(7]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

B. Valtchanov, V. Fischer, A. Aubert, and F. Bernard, “Characterization
of randomness sources in ring oscillator-based true random number gen-
erators in FPGAs,” in 13th IEEE Symposium on Design and Diagnostics
of Electronic Circuits and Systems. 1EEE, 2010, pp. 48-53.

S. Yasuda, H. Satake, T. Tanamoto, R. Ohba, K. Uchida, and S. Fujita,
“Physical random number generator based on MOS structure after soft
breakdown,” IEEE Journal of Solid-State Circuits, vol. 39, no. 8, pp.
1375-1377, 2004.

M.-S. Kim, I.-W. Tcho, and Y.-K. Choi, “Strategy to enhance entropy
of random numbers in a wind-driven triboelectric random number
generator,” Nano Energy, vol. 89, p. 106359, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2211285521006145
M.-S. Kim, I-W. Tcho, S.-J. Park, and Y.-K. Choi, “Random
number generator with a chaotic wind-driven triboelectric energy
harvester,” Nano Energy, vol. 78, p. 105275, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2211285520308521
M. P. Pawlowski, A. Jara, and M. Ogorzalek, “Harvesting entropy
for random number generation for internet of things constrained
devices using on-board sensors,” Sensors, vol. 15, no. 10, pp. 26 838—
26 865, 2015. [Online]. Available: https://www.mdpi.com/1424-8220/
15/10/26838

S.-M. Cho, E. Hong, and S.-H. Seo, “Random number generator using
sensors for drone,” IEEE Access, vol. 8, pp. 30343-30 354, 2020.

J. Bonneau, J. Clark, and S. Goldfeder, “On bitcoin as a public ran-
domness source,” Cryptology ePrint Archive, Report 2015/1015, 2015,
https://ia.cr/2015/1015,

N. Torii, D. Yamamoto, and T. Matsumoto, “Evaluation of latch-
based physical random number generator implementation on 40
nm ASICs,” in Proceedings of the 6th International Workshop on
Trustworthy Embedded Devices, ser. TrustED ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 23-30. [Online].
Available: https://doi.org/10.1145/2995289.2995292

M. Matsumoto, S. Yasuda, R. Ohba, K. Ikegami, T. Tanamoto, and
S. Fujita, “1200m2 physical random-number generators based on sin
mosfet for secure smart-card application,” in 2008 IEEE International
Solid-State Circuits Conference - Digest of Technical Papers, 2008, pp.
414-624.

C. R. S. Williams, J. C. Salevan, X. Li, R. Roy, and T. E. Murphy,
“Fast physical random number generator using amplified spontaneous
emission,” Opt. Express, vol. 18, no. 23, pp. 23584-23597, Nov
2010. [Online]. Available: http://opg.optica.org/oe/abstract.cfm?URI=
oe-18-23-23584

A. Elsonbaty, S. F. Hegazy, and S. S. Obayya, “Numerical analysis of
ultrafast physical random number generator using dual-channel optical
chaos,” Optical Engineering, vol. 55, no. 9, p. 094105, 2016.

A. T. Erozan, G. Y. Wang, R. Bishnoi, J. Aghassi-Hagmann, and M. B.
Tahoori, “A compact low-voltage true random number generator based
on inkjet printing technology,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 28, no. 6, pp. 1485-1495, 2020.

https://www.sciencedirect.com/science/article/pii/S2211285521006145
https://www.sciencedirect.com/science/article/pii/S2211285520308521
https://www.mdpi.com/1424-8220/15/10/26838
https://www.mdpi.com/1424-8220/15/10/26838
https://ia.cr/2015/1015
https://doi.org/10.1145/2995289.2995292
http://opg.optica.org/oe/abstract.cfm?URI=oe-18-23-23584
http://opg.optica.org/oe/abstract.cfm?URI=oe-18-23-23584

	Introduction
	Background
	The Importance of True Randomness
	Properties of True Randomness
	Obtaining and Evaluating True Randomness

	Evaluating Data for Randomness

	Physical Entropy Source Candidates
	Project Methodology and Constraints
	Finding Data Sets
	Testing Data Sets
	Converting ASCII to Binary
	The NIST Statistical Test Suite (NIST STS)

	Evaluation and Discussion
	Conclusion
	References

